Effects of Pasteurella multocida toxin on porcine bone marrow cell differentiation into osteoclasts and osteoblasts.

نویسندگان

  • S M Gwaltney
  • R J Galvin
  • K B Register
  • R B Rimler
  • M R Ackermann
چکیده

The effect of Pasteurella multocida toxin (PMT) on porcine osteoclast and osteoblast differentiation was studied using in vitro cell culture systems. When grown in the presence of Vitamin D3, isolated porcine bone marrow cells formed multinucleated cells with features characteristic of osteoclasts. Exposure of bone marrow cells to Vitamin D3 and PMT during growth resulted in formation of increased numbers and earlier appearance of osteoclasts compared to controls. Ultrafiltered medium form PMT-treated cells likewise increased osteoclast numbers, suggesting that a soluble mediator may be involved in the action of PMT. When cell cultures were treated with fluorescein-labeled PMT, fluorescence was found within the cytoplasm of small, round cells that did not resemble either osteoclasts or osteoclastic precursor cells. Cultures of porcine bone marrow cells exposed to dexamethasone, ascorbic acid, and beta-glycerophosphate developed into osteoblastic cells that formed multilayered, mineralized nodules. Exposure of osteoblastic cultures to low concentration of PMT resulted in retarded cell growth, formation of decreased numbers of nodules and minimal to no mineralization in the nodules; higher concentration of PMT resulted in increased cellular debris and poor growth of cells, with no nodule formation. These findings suggest that PMT may induce turbinate atrophy in pigs by increasing osteoclast numbers and inhibiting osteoblastic bone formation. The effect of PMT on osteoclastic differentiation and growth may not be due to a direct effect on preosteoclastic cells, but rather due to alterations in the soluble mediator secretion by marrow stromal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pasteurella multocida Toxin Triggers RANKL-Independent Osteoclastogenesis

Bone remodeling is a continuous process to retain the structural integrity and function of the skeleton. A tight coupling is maintained between osteoclast-mediated resorption of old or damaged bones and osteoblast-mediated formation of new bones for bone homeostasis. While osteoblasts differentiate from mesenchymal stem cells, osteoclasts are hematopoietic in origin and derived from myeloid pre...

متن کامل

Pasteurella Multocida Toxin Prevents Osteoblast Differentiation by Transactivation of the MAP-Kinase Cascade via the Gαq/11 - p63RhoGEF - RhoA Axis

The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the G(q/11)-, G₁₂/₁₃- and G(i)-family by deamidating an ...

متن کامل

Signaling Cascades of Pasteurella multocida Toxin in Immune Evasion

Pasteurella multocida toxin (PMT) is a protein toxin found in toxigenic strains of Pasteurella multocida. PMT is the causative agent for atrophic rhinitis in pigs, a disease characterized by loss of nasal turbinate bones due to an inhibition of osteoblast function and an increase in osteoclast activity and numbers. Apart from this, PMT acts as a strong mitogen, protects from apoptosis and has a...

متن کامل

Noncanonical G-Protein-Dependent Modulation of Osteoclast Differentiation and Bone Resorption Mediated by Pasteurella multocida Toxin

UNLABELLED Pasteurella multocida toxin (PMT) induces atrophic rhinitis in animals, which is characterized by a degradation of nasal turbinate bones, indicating an effect of the toxin on bone cells such as osteoblasts and osteoclasts. The underlying molecular mechanism of PMT was defined as a persistent activation of heterotrimeric G proteins by deamidation of a specific glutamine residue. Here,...

متن کامل

Pasteurella multocida toxin-stimulated osteoclast differentiation is B cell dependent.

Pasteurella multocida is a Gram-negative bacillus that infects a number of wild and domestic animals, causing respiratory diseases. Toxigenic Pasteurella multocida strains produce a protein toxin (PMT) that leads to atrophic rhinitis in swine due to enhanced osteoclastogenesis and the inhibition of osteoblast function. We show that PMT-induced osteoclastogenesis is promoted by an as-yet-unchara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Veterinary pathology

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 1997